182 research outputs found

    An Approach to Twitter Event Detection Using the Newsworthiness Metric

    Get PDF

    Concert recording 2021-11-13

    Get PDF
    [Track 1]. Pastorale, BWV 590 / J.S. Bach -- [Track 2]. Suite no. 3 in C major for cello solo, BWV 1009. Prelude ; Allemande ; Courante ; Sarabande ; Boureé I & II ; Gigue / Bach -- [Track 3]. Pezzo capriccioso, op. 62 / Pyotr Tchaikovsky -- [Track 4]. When you wish upon a star -- [Track 5]. Mother goose suite. Pavane de la belle au bois dormant / Maurice Ravel -- Songs my mother taught me / Antonin Dvorák/Kreisler -- [Track 6]. Hansel and Gretel. Evening prayer / Engelbert Humperdinck -- [Track 7]. Cendrillon. Cinderella’s stepsisters / Jules Massenet -- [Track 8]. A frog he went a-courting / Paul Hindemith -- [Track 9]. Orfeo. Melodie / Christoph Gluck -- [Track 10]. Mother Goose suite. The fairy garden / Ravel

    The Importance of Culture-Fit for Remembering Church Sermons

    Get PDF
    This experiment tested the degree to which culture-fit influences memory for the content of a sermon. We hypothesized that people who read a sermon emphasizing the infallibility of Christian scriptures will remember it more accurately if they have collectivistic rather than individualistic values. In contrast, we hypothesized that people who read a sermon emphasizing the subjectivity of Christian scriptures will remember it more accurately if they have individualistic rather than collectivistic values. Participants (n = 270) were randomly assigned to read either an orthodox- or quest-oriented sermon regarding Peter 1:20-21. They then completed a true-false memory test as to whether or not statements were in the sermon they read. Later, they completed an online survey of their cultural values and beliefs. Results indicated that highly collectivistic individuals’ memories were negatively affected in the Quest Condition, but not in the Orthodox Condition. Implications for the culture-fit of religious information are discussed

    Seawater transport during coral biomineralization

    Get PDF
    Cation transport during skeletal growth is a key process controlling metal/calcium (Me/Ca) paleoproxy behavior in coral. To characterize this transport, cultured corals were transferred into seawater enriched in the rare earth element Tb^(3+) as well as stable isotopes of calcium, strontium, and barium. Subsequent NanoSIMS ion images of each coral skeleton were used to follow uptake dynamics. These images show a continuous region corresponding to new growth that is homogeneously enriched in each tracer. Isotope ratio profiles across the new growth boundary transition rapidly from natural abundance ratios to a ratio matching the enriched culture solution. The location of this transition is the same for each element, within analytical resolution. The synchronous incorporation of all these cations, including the dissimilar ion terbium, which has no known biological function in coral, suggests that: (1) there is cation exchange between seawater and the calcifying fluid, and (2) these elements are influenced by similar transport mechanisms consistent with direct and rapid seawater transport to the site of calcification. Measured using isotope ratio profiles, seawater transport rates differ from place to place on the growing coral skeleton, with calcifying fluid turnover times from 30 min to 5.7 h. Despite these differences, all the elements measured in this study show the same transport dynamics at each location. Using an analytical geochemical model of biomineralization that includes direct seawater transport we constrain the role of active calcium pumping during calcification and we show that the balance between seawater transport and precipitation can explain observed Me/Ca variability in deep-sea coral

    Catalysis and chemical mechanisms of calcite dissolution in seawater

    Get PDF
    Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric CO_2 on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve ^(13)C-labeled calcites in natural seawater. We show that the time-evolving enrichment of δ^(13)C in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the ^(13)C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution–precipitation shifts significantly toward a dissolution-dominated mechanism below about Ω= 0.7. Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of CO_2 is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid–solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at Ω= 0.7, which we interpret as the onset of homogeneous etch pit nucleation

    Sr/Ca sensitivity to aragonite saturation state in cultured subsamples from a single colony of coral: Mechanism of biomineralization during ocean acidification

    Get PDF
    Using a new and rapid NanoSIMS-based method, we quantified the sensitivity of skeletal Sr/Ca in coral to the aragonite saturation state of seawater (Ω_(SW)). Skeletal Sr/Ca is a common proxy for temperature while Ω_(SW) is a parameter that varied in the past ocean and is predicted to change with continued ocean acidification. Five adult branches of the surface coral Stylophora pistillata were grown at different Ω_(SW) from 2.7 to 4.9 (pH of 7.9–8.5) but at a constant temperature of 25 °C. Despite a large range of growth parameters and a twofold range in calcification rates, the average skeletal Sr/Ca of coral exposed to each condition are within 1.2% of each other (2σ std. dev. of the 5 means). Furthermore, the average skeletal Sr/Ca measured in this study agrees with the results of two previous coral culture experiments conducted at the same temperature but where Ω_(SW) was not controlled. These results suggest that aragonite saturation has little or no influence on Sr/Ca paleothermometry over the range of Ω_(SW) investigated. Combined with existing data for low Ω_(SW) conditions, our results were used to elucidate the mechanisms controlling calcifying fluid acid–base chemistry during coral biomineralization. Assuming that coral drive precipitation through alkalinity pumping, our data suggest that this pumping occurs until the calcifying fluid reaches a target pH. Below a threshold Ω_(SW) bounded by 1 < Ω_(SW) < 2.4, however, coral do not pump enough alkalinity to reach the target pH and instead pump a maximal but finite amount of alkalinity. In this low Ω_(SW) regime, calcifying fluid pH is expected to decrease with Ω_(SW). The interplay between these two alkalinity pumping regimes and external seawater composition explain the full range of observed Sr/Ca sensitivity to Ω_(SW) and suggest that surface coral may become increasingly sensitive to ocean acidification below a threshold Ω_(SW) bounded by 1 < Ω_(SW) < 2.4

    Pre-radiotherapy feeding tube identifies a poor prognostic subset of postoperative p16 positive oropharyngeal carcinoma patients

    Get PDF
    BACKGROUND: This study explores variables associated with poor prognosis in postoperative p16 positive oropharyngeal squamous cell carcinoma (OPSCC) patients undergoing adjuvant radiotherapy or chemoradiotherapy. Specifically, analysis was done related to timing of feeding tube insertion relative to radiotherapy. METHODS: From 1997–2009, of 376 consecutive patients with OPSCC, 220 received adjuvant IMRT, and 97 were p16 positive and eligible. Of these, 23 had feeding tube placement before IMRT (B-FT), 32 during/after IMRT (DA-FT), and 42 had no feeding tube (NO-FT). Feeding tubes were not placed prophylactically. These three groups were analyzed for differential tumor, patient, treatment, and feeding tube characteristics, as well as differences in overall survival (OS), disease free survival (DFS), and distant metastasis free survival (DMFS). RESULTS: Pre-RT FT insertion was associated with higher tumor size and depth, T (but not N) and overall stage, comorbidities, presence of chemotherapy, and less use of transoral laser microsurgery/transoral bovie. Additionally, time from surgery to IMRT completion was also statistically longer in the B-FT group. The feeding tube was permanent in 52% of patients in the B-FT group versus 16% in the DA-FT group (p = 0.0075). The 5-year OS for the NO-FT, DA-FT, and B-FT groups was 90%, 86%, and 50%, respectively. The 5-year DFS for the NO-FT, DA-FT, and B-FT groups was 87.6%, 83.6%, and 42.7%, respectively. Multivariate analysis showed that for OS and DFS, feeding tube placement timing and smoking history were statistically significant. CONCLUSION: Due to the poor prognosis of early FT insertion, the presence of FTs at time of radiotherapy consultation can be used as an alternate marker to identify a subset of p16 positive OPSCC patients that have a poor prognosis

    Multiscale, multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas.

    Get PDF
    Glioma is recognized to be a highly heterogeneous CNS malignancy, whose diverse cellular composition and cellular interactions have not been well characterized. To gain new clinical- and biological-insights into the genetically-bifurcated IDH1 mutant (mt) vs wildtype (wt) forms of glioma, we integrated data from protein, genomic and MR imaging from 20 treatment-naïve glioma cases and 16 recurrent GBM cases. Multiplexed immunofluorescence (MxIF) was used to generate single cell data for 43 protein markers representing all cancer hallmarks, Genomic sequencing (exome and RNA (normal and tumor) and magnetic resonance imaging (MRI) quantitative features (protocols were T1-post, FLAIR and ADC) from whole tumor, peritumoral edema and enhancing core vs equivalent normal region were also collected from patients. Based on MxIF analysis, 85,767 cells (glioma cases) and 56,304 cells (GBM cases) were used to generate cell-level data for 24 biomarkers. K-means clustering was used to generate 7 distinct groups of cells with divergent biomarker profiles and deconvolution was used to assign RNA data into three classes. Spatial and molecular heterogeneity metrics were generated for the cell data. All features were compared between IDH mt and IDHwt patients and were finally combined to provide a holistic/integrated comparison. Protein expression by hallmark was generally lower in the IDHmt vs wt patients. Molecular and spatial heterogeneity scores for angiogenesis and cell invasion also differed between IDHmt and wt gliomas irrespective of prior treatment and tumor grade; these differences also persisted in the MR imaging features of peritumoral edema and contrast enhancement volumes. A coherent picture of enhanced angiogenesis in IDHwt tumors was derived from multiple platforms (genomic, proteomic and imaging) and scales from individual proteins to cell clusters and heterogeneity, as well as bulk tumor RNA and imaging features. Longer overall survival for IDH1mt glioma patients may reflect mutation-driven alterations in cellular, molecular, and spatial heterogeneity which manifest in discernable radiological manifestations
    • …
    corecore